Structural and energetic basis for hybridization limits in high-density DNA monolayers.

نویسندگان

  • Giovanni Doni
  • Maryse D Nkoua Ngavouka
  • Alessandro Barducci
  • Pietro Parisse
  • Alessandro De Vita
  • Giacinto Scoles
  • Loredana Casalis
  • Giovanni M Pavan
چکیده

High-density monolayers (HDMs) of single-strand (ss) DNA are important nanoscale platforms for the fabrication of sensors and for mechanistic studies of enzymes on surfaces. Such systems can be used, for example, to monitor gene expression, and for the construction of more complex nanodevices via selective hybridization with the complementary oligos dissolved in solution. In this framework, controlling HDM hybridization is essential to control the final properties. Different studies demonstrate that at the typical density of ≈10(13) molecules per cm(2) no more than ≈30-40% of the HDM ssDNA is successfully hybridized. Until now, however, the origin of the HDM hybridization limit has remained unclear. In this work, molecular dynamics (MD) simulations of HDM systems with variable hybridization reveal that, independently of other experimental parameters, the effective hybridization for a HDM of this density is intrinsically limited by molecular and electrostatic crowding. A detailed structural analysis of the HDM model shows good agreement with our atomic force microscopy (AFM) experiments, and provides further insight into the steric hindrance behaviour and time-resolved surface topography of these nanostructured systems. The explicit relationship proposed between structural crowding and limited HDM hybridization offers a rationale to control the final properties of HDM-based nanodevices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution X-ray photoelectron spectroscopy of mixed silane monolayers for DNA attachment.

The amine density of 3-aminopropyldimethylethoxysilane (APDMES) films on silica is controlled to determine its effect on DNA probe density and subsequent DNA hybridization. The amine density is tailored by controlling the surface reaction time of (1) APDMES, or (2) n-propyldimethylchlorosilane (PDMCS, which is not amine terminated) and then reacting it with APDMES to form a mixed monolayer. Hig...

متن کامل

Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...

متن کامل

Density functional explorations of quadrupole coupling constants for BN, BP, AlN, and AlP graphene–like structures

Stabilizations and atomic level quadrupole coupling constant (CQ) properties have been investigated for graphene–like monolayers (G–monolayers) of boron nitride (BN), boron phosphide (BP), aluminum nitride (AlN), and aluminum phosphide (AlP) structures. To this aim, density functional theory (DFT) calculations have been performed to optimize the model structures and also to evaluate the CQ para...

متن کامل

Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment.

Nanografted monolayers (NAMs) of DNA show novel physico-chemical properties that make them ideally suited for advanced biosensing applications. In comparison with alternative solid-phase techniques for diagnostic DNA detection, NAMs have the advantage of combining a small size with a high homogeneity of the DNA surface coverage. These two properties favour the extreme miniaturization and ultras...

متن کامل

Investigating the Effect of Fullerene (C20) Substitution on the Structural and Energetic Properties of Tetryl by Density Functional Theory

The substitution reaction of pure, silicon doped and germanium doped fullerenes and tetryl were evaluated computationally at two configurations, in this study. For this purpose, all of the studied structures were optimized geometrically and then IR and NBO calculations were performed on them in the temperature range of 300-400 K at 10˚ intervals. The obtained negative values of Gibbs free energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 5 20  شماره 

صفحات  -

تاریخ انتشار 2013